

ML1001B 系列静态 LCD COG 驱动

❖ 应用程序

- ◆ 电子仪表LCD 模块
- ◆ 电话 LCD 模块
- ◆ 汽车 LCD 模块
- ◆ 手持设备 LCD 模块

❖ 特性

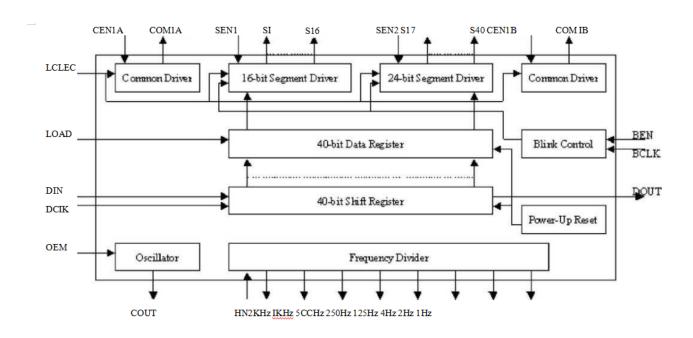
- 1.) 没有外部组件的金凸块工艺芯片
- 2.) Logic & LCD 供电电压: 2.0V to 6.0V
- 典型的电流损耗: 25uA , 在 VIN = 3V 和空载条件下.
- 分段数目: 40
- 级联 ML1001 的 80 或 120 段的单片 LCD 驱动.
- 简单的 3 引脚微控制器接口: DIN, DCLK & LOAD.
- 数据闪烁显示
- 提供 TN LCD 工艺最好的对比度和最宽的视角.
- Topr=-40°C to 80°C 时不需要温度补偿

❖ 一般说明

ML1001 静态 LCD COG(chip on glass)驱动器是 40 段 LCD 金凸块工艺驱动。它可以级联形成一个 80 或 120 段的 LCD 驱动器。它的目标是定制的 TN LCD COG 模块产品,需要最佳质量的 TN LCD 技术。通过使用 ML1001 系列驱动器,与多路复方法相比,它提供了最好的对比度、最宽的视角、最宽的工作电压范围和最宽的工作温度范围。

我们的 ML1001 包括一个内置 32 kHz 振荡器,一个 40 位移位寄存器,一个 40 位数据寄存器,一个 16 位段驱动,一个 24 位段驱动,两个公共驱动,一个闪烁控制电路,一个通电复位电路和一个分频器,为闪烁控制段和公共驱动电路提供必要的时钟信号。

通过 DIN 引脚,显示数据连续移入 DCLK 信号上升边缘的 40 位移位寄存器。显示数据将显示在附加的 LCD 上显示,然后存储在负载信号上升边缘的 40 位数据寄存器中。


还包括其他功能,如通过 BEN 和 BCLK 闪烁显示数据,通过 OEN 禁用内部振荡器,向 FIN 输入外部时钟信号,以及通过 SEN1、SEN2、CENIA 和 CEN1B 启用或禁用段和公共驱动器。

❖ 订购信息

产品编码	种类	封装
ML1001B-1U	40 段静态 LCD 驱动	金凸块芯片
ML1001B-2U	80 段静态 LCD 驱动	金凸块芯片
ML1001B-3U	120 段静态 LCD 驱动	金凸块芯片

❖ 框图

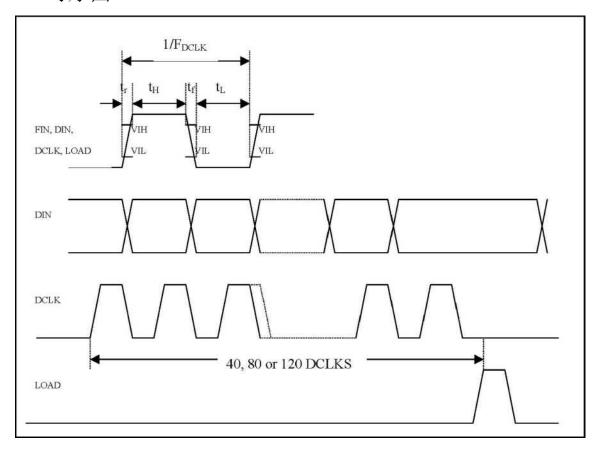
❖ 最大额定参数

参数	符号	条件	最小	最大	单位
电源电压	Vdd		-0.5	+7.0	V
电源电流	Idd	V _{DD} = 3 V 不带负载	-50	+50	mA
输入电压	Vin		GND-0.3	V _{DD} +03	V
输出电压	VoUT		GND-0.3	V _{DD} +03	V
DC 输入电流	IIN		-10	+10	mA
DC 输出电流	loUT		-10	+10	mA
存储温度	Tstg		-65	+150	°C
总功耗	Ptot		-	400	mW

◆DC 特性

VDD = 3.0V; Tamb = 25°C; 除非另有说明

参数	符号	条件	最小	典型	最大	单位
必要				·		
电源电压	Vdd		2.0		6.0	V
电源电流	Idd	禁用振荡器		0.1	0.5	uA
电源电流	Idd	启用振荡器	-	25	60	uA
Logic 端						
低电平输入电压	V I		GND		0.3*Vdd	V
高电平输入电压	VjH		0.7*Vdd		Vdd	V
低电平输出电流	IoL	V _{OL} =1.0V	1			mA
高电平输出电流	ІоН	V _{OH} = 2.0V	-1			mA
LCD 输出						
	RSEG			85	150	ohm
PADs SI to S40 的输出电阻			-			
PADs COM1A 和 COM1B	RCOM			45	100	ohm
的输出电阻						


◆AC 特性

VDD =3.0V; Tamb = 25°C; 除非另有说明

参数	符号	条 件	最小	典型	最大	单位
	foout		21	32	48	kHz
OOUT 引脚震荡频率						
FIN, LOAD, DIN, DCLK 高	t _H		0.4			us
电平时间				_	-	
rin, LOAD, Din, DCLK	tL		0.4			us
低电平时间				_	-	
FIN, LOAD, DIN, DCLK	tr				10	us
上升沿时间			•	•		
FIN, LOAD, DIN, DCLK 下	tf				10	us
降沿时间			•			
DCLK 频率	FDCLK		1		100	kHz
波特率	BpSDCLK		1		500	kbps

❖ 时序图

❖ 功能性说明

ML1001 是一个静态 LCD COG(chip on glass)驱动器,可以驱动多达 40 段或与 2 或 3 个 ML1001s 级联驱动 80 和 120 段。在数据中有一个用于连续移位的移位寄存器,还有一个数据寄存器用于存储将要显示的数据。显示数据通过 DCLK 信号上升边缘的 DIN 引脚连续读入移位寄存器。然后,显示数据将显示在负载信号的上升边缘。移位寄存器中的显示数据在 DCLK 信号的 40 个上升边后由 DOUT 引脚输出。显示数据应按 SEG40、SEG39....SEG2、SEG1 的顺序输入,以便正确显示数据。

SEG39....SEG2、SEGI 时顺介相八、以民工和业外致论

i) 电源复位

在 ML1001 通电时, 重置为如下启动条件:

- 1. 移位寄存器的输出被设置为 GND。
- 2. 数据寄存器输出设置为 GND, 因此所有 LCD 段都关闭。

ii) 振荡器

a) 内部时钟

ML1001的内部逻辑和LCD驱动信号由内置振荡器或从外部时钟进行时钟。当使用内部振荡器时,OEN应连接到GND,OOUT应连接到FIN。振荡器将在32kHz处振荡,且频率在2.0V<VDD<6.0V的范围内无关。

b) 外部时钟

当使用外部时钟时,OEN 被连接到 VDD,然后将外部时钟连接到 FIN

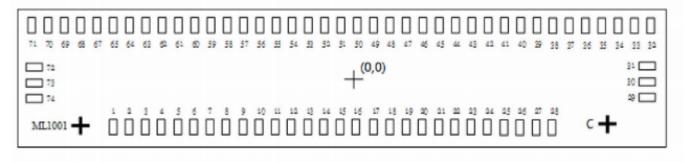
in) 时序

ML1001 有几个频率的时钟信号,供用户选择为液晶显示时钟(即 LCLK)和眨眼时钟(即 BLCK)。总线时钟它们包括以下时钟信号:

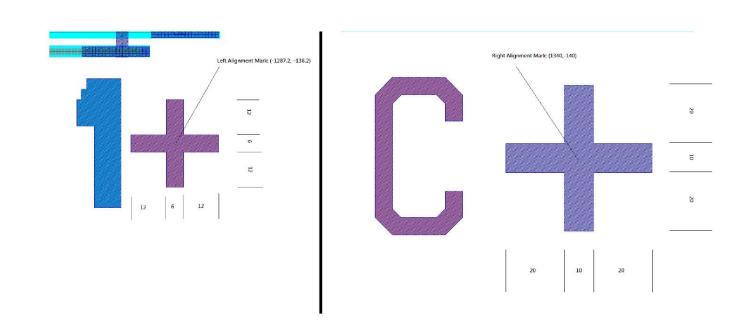
FIN 时钟信号频率 = 32 kHz	FIN 的实际划分	目标输入引脚
2 KHz	1/16	
IKHz	1/32	
500 Hz	1/64	LCLK
256 Hz	1/128	
128 Hz	1/256	
4 Hz	1/8192	
2 Hz	1/16384	BCLK
1 Hz	1/32768	

iv) 段输出

ML1001 有 40 个段输出,应该直接连接到 LCD。如果需要的段少于 40 段,未使用的段应保持开路。用户可以通过将 SEN1 和 SEN2 分别连接到 VDD 来禁用前 1 到 16 段和最后 17 到 40 段。禁用后,分段输出应输出 GND 电平。


v) 通用输出

ML1001 由两个常见的信号组成。COM1A& COM IB).这两个常见的信号是 LCLK 的反转。如果输出未使用,则公共输出应保持开路。用户可以通过将 CEN1A 和 CEN IB 分别连接到 VDD 来禁用 COM 1A 和 COM IB。在禁用它后,公共输出将变为 GND。


vi) 闪烁器

ML1001 具有闪烁功能,用户应将 BEN 连接到 GND,并输入眨眼时钟(即。BCLK)或通过连接 ML1001 输出时钟信号 从分频器或一个外部时钟信号。用户应通过连接 BEN 到 VDD 来禁用闪烁功能。

◆ 焊盘分布

对齐标志:

芯片尺寸:

编号	种类	芯片尺寸
ML1001-1U	40 段静态 LCD 驱动	3,440 um x 600 um
ML1001-2U	80 段静态 LCD 驱动	6,880 um x 600 um
ML1001-3U	120 段静态 LCD 驱动	10,320 um x 600 um

芯片厚度:400 um + 25 um 金凸块 Pad c 尺寸:32um x 72um 金凸块高度: 18um + 2um 右对齐坐标点: (1340, -140) 左对齐坐标点: (-1287.2, -138.2)

ML100 IC 的中心原点

注:

P6/14

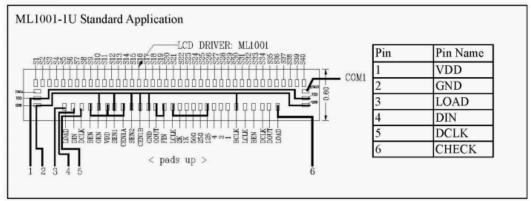
Rev. L, Jan 2015

1.) 芯片在图中正面朝上

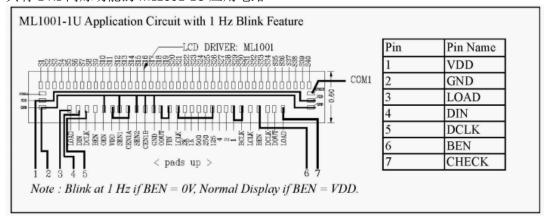
焊盘位置: 所有 x 和 y 坐标都参考芯片中心。

PAD	PAD	坐	标	PAD	PAD	坐	标	PAD	PAD	坐	标
Num.	Name	X	Y	Num.	Name	X	Y	Num.	Name	X	Y
1	LOAD	-1246	-140	26	DCLK	1054	-140	51	S21	20	140
2	DIN	-1146	-140	27	DOUT	1134	-140	52	S20	-60	140
3	DCLK	-1046	-140	28	LOAD	1234	-140	53	S19	-140	140
4	BEN	-946	-140	29	GND	1560	-120	54	S18	-220	140
5	OEN	-846	-140	30	VDD	1560	-40	55	S17	-300	140
6	VDD	-746	-140	31	COM1B	1560	40	56	S16	-380	140
7	SEN1	-666	-140	32	S40	1540	140	57	S15	-460	140
8	CEN1A	-566	-140	33	S39	1460	140	58	S14	-540	140
9	SEN2	-466	-140	34	S38	1380	140	59	S13	-620	140
10	CEN1B	-366	-140	35	S37	1300	140	60	S12	-700	140
11	GND	-266	-140	36	S36	1220	140	61	Sil	-780	140
12	OOUT	-186	-140	37	S35	1140	140	62	S10	-860	140
13	FIN	-86	-140	38	S34	1060	140	63	S9	-940	140
14	LCLK	14	-140	39	S33	980	140	64	S8	-1020	140
15	2 KHz	94	-140	40	S32	900	140	65	S7	-1100	140
16	1 KHz	174	-140	41	S31	820	140	66	S6	-1180	140
17	500 Hz	254	-140	42	S30	740	140	67	S5	-1260	140
18	250 Hz	334	-140	43	S29	660	140	68	S4	-1340	140
19	125 Hz	414	-140	44	S28	580	140	69	S3	-1420	140
20	4 Hz	494	-140	45	S27	500	140	70	S2	-1500	140
21	2 Hz	574	-140	46	S26	420	140	71	SI	-1580	140
22	1 Hz	654	-140	47	S25	340	140	72	COM1A	-1560	40
23	BCLK	754	-140	48	S24	260	140	73	VDD	-1560	-40
24	LCLK	854	-140	49	S23	180	140	74	GND	-1560	-120
25	BEN	954	-140	50	S22	100	140				

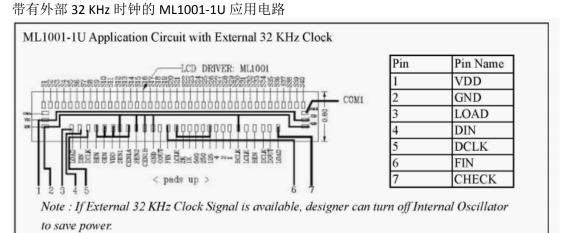
引脚说明:


标志	焊 盘	描述
LOAD	1,28	将数据从移位寄存器加载到数据寄存器;注 1
DIN	2	显示数据输入引脚
DCLK	3,26	输入引脚为时钟的显示数据;注 1
BEN	4,25	启用引脚闪烁功能;注 1、注 2
OEN	5	引脚能启用 内部振荡器;注 2
Vdd	6	电源电压
SEN1	7	启用 SI 至 S16 段的 pin;注释 1
CEN1A	8	COM1A 的使能引脚;注释 2
SEN2	9	启用 S17 至 S40 段的引脚;注释 1
CEN1B	1()	启用 COM IB 的 pin;注释 2
GND	11	数字器件接地
OOUT	12	内部振荡器的输出引脚
FIN	13	外部/内部时钟的输入引脚
LCLK	14,24	LCD 显示时钟的输入引脚; 注释 1
2 kHz	15	向 FIN 输出输入的 1/16 频率;注释 3
1kHz	16	输出至 FIN 的 1/32 输入频率;注释 3
512 Hz	17	向 FIN 输出输入的 1/64 频率;注释 3
256 Hz	18	向 FIN 输出输入的 1/128 频率;注释 3
128 Hz	19	输出 1/256 频率的输入到 FIN; 注释 3
4 Hz	20	FIN 输入的输出 1/8192 频率;注释 3
2 Hz	21	向 FIN 输出输入的 1/16384 频率;注释 3
1Hz	22	向 FIN 输出 1/32768 输入频率;注释 3
BCLK	23	闪烁时钟的输入引脚
DOUT	27	40 位移位寄存器的输出引脚,应连接到下一个 ML1001 的 DIN
GND	29	数字器件接地
VDD	30	电源电压
COM IB	31	至 LCD 面板的公共驱动信号
S40toS1	32 to 71	LCD 段输出
COM1A	72	至 LCD 面板的公共驱动信号
Vdd	73	电源电压
GND	74	数字器件接地

注:

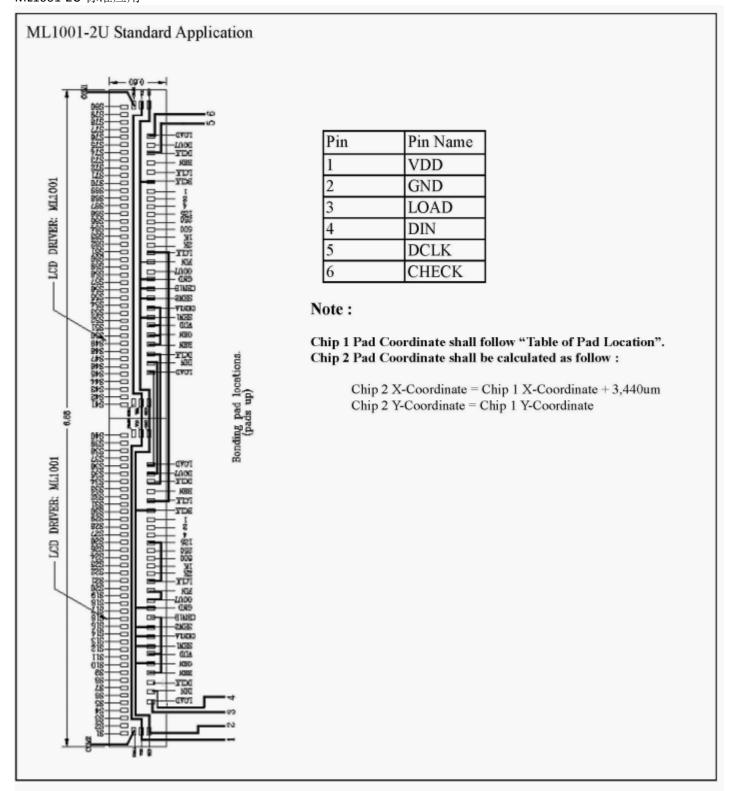

1.在 MLIOOI 的级联格式(即 ML1001-2U 和-3U)中,一个引脚是当前 ML 1001 的输入,另一个引脚与下一个 ML 100I 的相应输入引脚连接。

- 2.所有启用引脚均为低电平。
- 3. 条件: FIN=32 KHz 时钟。


应用实例

具有 1 Hz 闪烁功能的 ML1001-1U 应用电路

注: 如果 BEN=OV,则以 1 Hz 闪烁;如果 BEN=VDD,则正常显示。

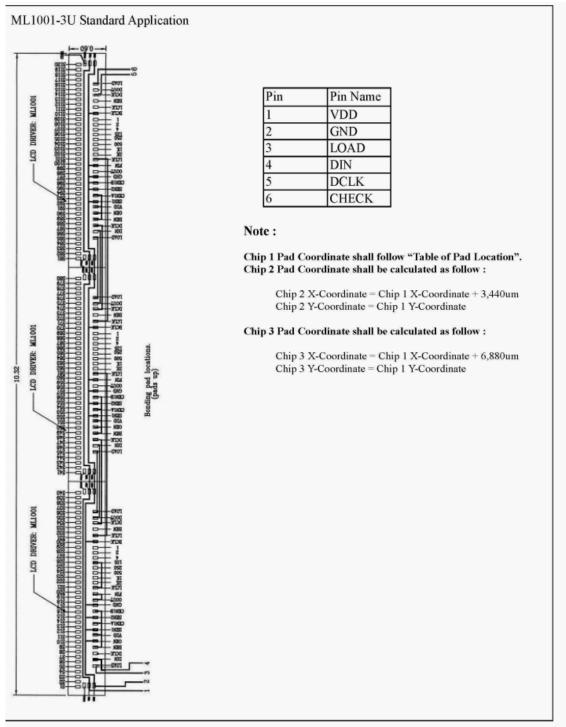


注: 若外部 32 KHz 时钟信号可用,设计者可以关闭内部振荡器以节省电力。

注:如果倒装芯片组件状况良好,则 Pin LOAD 和 Pin CHECK 应连接在一起。因此,Pin CHECK 可用于验证倒装芯片组装质量。

ML1001-2U 标准应用

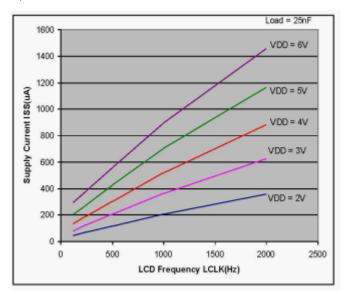
注:


芯片 1 焊盘坐标应遵循"焊盘位置表"。芯片 2 焊盘坐标的计算如下:

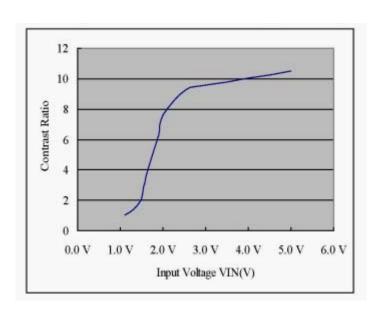
P10/14 Rev. L, Jan 2015

芯片 2 X 坐标=芯片 1 X 坐标+3440um 芯片 2 Y 坐标=芯片 1 Y 坐标

ML1001-3U 标准应用


注:

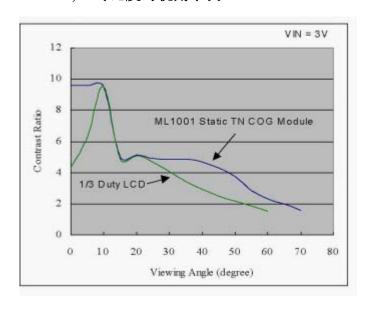
- 芯片 1 焊盘坐标应遵循 uTable of Pad Location"。芯片 2 焊盘坐标的计算如下:
- 芯片 2 X 坐标=芯片 1 X 坐标+3440um 芯片 2 Y 坐标=芯片一 Y 坐标
- 芯片 3 焊盘坐标计算如下:
- 芯片 3 X 坐标=芯片 1 X 坐标+6880um 芯片 3 Y 坐标=芯片一 Y 坐标

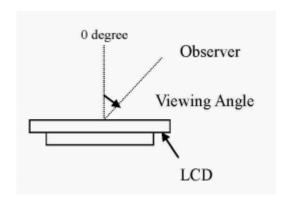


❖ 典型特征

1) 电源电流与 LCLK 频率


3) 对比度 vs>输入电压示例

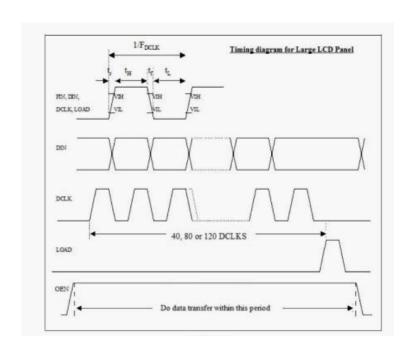

注: 1.液晶显示器的对比度应与所用液晶不同。


- 2.图 4 所示为 1/3 Duty LCD 的对比度,仅供比较。
- 3. 视角从 LCD 的法线测量,如下所示。

2) 电源电流与输入电压

4) 对比度与视角示例

Rev. L, Jan 2015

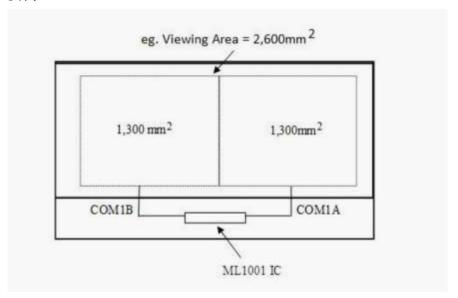

❖ 应用程序注释

- 1. 为了确保 LCD 模块正常工作,DCLK 必须连接第 2 个 ML1001 IC 以进行 ML1001-2U 配置,如第 10 页 所示,或连接第 3 个 ML1001IC 以进行第 11 页所示的 ML1001-3U 配置。
- 2. 为了确保良好的倒装芯片组装质量,我们建议倒装芯片接合室为每个 COG 模块添加一个"CHECK"引脚,如 uApplication Example 一节所示。如果倒装芯片组件状况良好,则引脚"LOAD"和引脚"CHECK"应连接在一起。引脚"LOAD"和引脚(CHECK)之间的电阻测量值不得超过 5 千欧
- 3. ITO 玻璃的电阻应在 15 ohm/n 至 25 ohm/a 之间。
- 4.每个公共线(即 COM1A 和 COM IB)的面积不得超过 2000 mm2。如果 LCD 的 Mewing 面积必须大于 2000 mm,则必须使用更常见的输出。

OEN 引脚必须连接到外部。在数据传输到 IC 时,必须通过 OEN 引脚禁用内部振荡器,以防止异常行为。数据传输完成后,必须再次启用内部振荡器。

建议的编程步骤:

1	通过 OEN 引脚禁用内部振荡器
2	延迟(快速 MCU 需要)
3	通过 DIN、DCLK、LOAD 传输数据
4	延迟(快速 MCU 需要)
5	通过 OEN 引脚启用内部振荡器



P13/14 Rev. L, Jan 2015

实例

注: COM1A 和 COM1B 应覆盖一半的观察区域(即面积=1300mm2)。各公共线不得相互连接。

本文件中提供的信息不构成任何报价或合同的一部分,被认为是准确可靠的,可以不经通知进行更改。我们对其使用造成的任何后果不承担任何责任。